53 research outputs found

    Neural Decision Boundaries for Maximal Information Transmission

    Get PDF
    We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information transmitted about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure

    Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating

    Get PDF
    In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease

    Incidence and Outcome of Acute Phosphate Nephropathy in Iceland

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Oral sodium phosphate solutions (OSPS) are widely used for bowel cleansing prior to colonoscopy and other procedures. Cases of renal failure due to acute phosphate nephropathy following OSPS ingestion have been documented in recent years, questioning the safety of OSPS. However, the magnitude of the problem remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a population based, retrospective analysis of medical records and biopsies of all cases of acute phosphate nephropathy that were diagnosed in our country in the period from January 2005 to October 2008. Utilizing the complete official sales figures of OSPS, we calculated the incidence of acute phosphate nephropathy in our country. Fifteen cases of acute phosphate nephropathy were diagnosed per 17,651 sold doses of OSPS (0.085%). Nine (60%) were women and mean age 69 years (range 56-75 years). Thirteen patients had a history of hypertension (87%) all of whom were treated with either ACE-I or ARB and/or diuretics. One patient had underlying DM type I and an active colitis and one patient had no risk factor for the development of acute phosphate nephropathy. Average baseline creatinine was 81.7 µmol/L and 180.1 at the discovery of acute renal failure, mean 4.2 months after OSPS ingestion. No patient had a full recovery of renal function, and at the end of follow-up, 26.6 months after the OSPS ingestion, the average creatinine was 184.2 µmol/L. The average eGFR declined from 73.5 ml/min/1.73 m(2) at baseline to 37.3 ml/min/1.73 m(2) at the end of follow-up. One patient reached end-stage renal disease and one patient died with progressive renal failure. CONCLUSION/SIGNIFICANCE: Acute phosphate nephropathy developed in almost one out of thousand sold doses of OSPS. The consequences for kidney function were detrimental. This information can be used in other populations to estimate the impact of OSPS. Our data suggest that acute phosphate nephropathy may be greatly underreported worldwide

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons

    Get PDF
    Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth

    Xaf1 can cooperate with TNFα in the induction of apoptosis, independently of interaction with XIAP

    Full text link
    XIAP-associated factor 1 (Xaf1) binds XIAP and re-localizes it to the nucleus, thus inhibiting XIAP activity and enhancing apoptosis [1]. Xaf1 expression is reduced or absent in tumor samples and cell lines suggesting it may function as a tumor suppressor [2–5]. To further study Xaf1 function we generated Xaf1 inducible cells in the osteosarcoma cell line Saos-2. Despite Xaf1 inducing apoptosis that is dramatically enhanced by TNFα we find no evidence for an interaction between Xaf1 and XIAP. Furthermore, Xaf1 expression sensitized XIAP −/− fibroblasts to TNFα, demonstrating the existence of a novel mechanism of Xaf1 induced apoptosis distinct from antagonizing XIAP. Xaf1 expression promotes cytochrome c release that cannot be blocked by inhibition of caspase activity. This implicates a role for the mitochondrial apoptotic pathway, consistent with the ability of Bcl2 to block Xaf1 induced apoptosis. The data indicate that in Saos2 cells Xaf1 activates the mitochondrial apoptotic pathway to facilitate cytochrome c release, thus amplifying apoptotic signals from death receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45342/1/11010_2005_Article_9094.pd

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Caspase-3 Protects Stressed Organs against Cell Death.

    Get PDF
    The ability to generate appropriate defense responses is crucial for the survival of an organism exposed to pathogenesis-inducing insults. However, the mechanisms that allow tissues and organs to cope with such stresses are poorly understood. Here we show that caspase-3-knockout mice or caspase inhibitor-treated mice were defective in activating the antiapoptotic Akt kinase in response to various chemical and environmental stresses causing sunburns, cardiomyopathy, or colitis. Defective Akt activation in caspase-3-knockout mice was accompanied by increased cell death and impaired survival in some cases. Mice homozygous for a mutation in RasGAP that prevents its cleavage by caspase-3 exhibited a similar defect in Akt activation, leading to increased apoptosis in stressed organs, marked deterioration of their physiological functions, and stronger disease development. Our results provide evidence for the relevance of caspase-3 as a stress intensity sensor that controls cell fate by either initiating a RasGAP cleavage-dependent cell resistance program or a cell suicide response
    corecore